			NUM. DIA.		
CONDUCTOR: 26 AWG //34 STRANDED TINNED COP		41500	.019"	12	
INSULATION: HIGH DENSITY POLYETHYLENE, 010	HIGH DENSITY POLYETHYLENE, .010" NOM. WALL THICKNESS				
PAIRS: COLOR CODED SINGLES TWISTED IN			.078"	8	
CABLE: (4) TWISTED PAIRS TWISTED TOGET	(4) TWISTED PAIRS TWISTED TOGETHER TO FORM A CABLE CORE			2	
WRAPPED WITH A CLEAR POLYESTE	R BINDER.		.170"	4	
SHIELD: AN ALUMINIZED POLYESTER FOIL SH	IIELD (FOIL IN) WIT	H A 26 AWG			
TINNED COPPER DRAIN WIRE IN CON	ITACT WITH META	LIZED SURFACE			
(100% COVERAGE) SHALL BE APPLIE	D OVER THE CABL	E CORE.	.173"		
JACKET: THERMOPLASTIC ELASTOMER, (COL	OR, PER CHART 1)	, .032" NOM. WALL			
THICKNESS (PRESSURE)	OVERALL CAB	LE DIAMETER	.237" NOM. (± .01	0")	
			(BY PI TAPE)		
2) PHYSICAL PROPERTIES:					
TEMPERATURE RATING, MAX.	75°C (JACKET	105°C, 75°C OIL)			
TEMPERATURE RATING, MIN.	-40°C				
WT./M', NOM., NET.	24.5 LBS.				
BEND RADIUS	1.9" STATIC BE	IND			
JACKET IS WELD SPATTER RESISTANT					
JACKET IS SUNLIGHT RESISTANT	PER UL 2556				
JACKET CUTTING/MACHINING OIL RESISTANCE (PER	QUABBIN TEST RE	PORT #TR 08-0001)			
(6 MONTHS @ 20°C)		/			
TENSILE STRENGTH RETENTION, NOM.	80%				
ELONGATION RETENTION, NOM.	100%				
	n av i ge				
CHART 1:					
5760 BLACK					
5761 BLUE					
5762 TEAL					
5763 RED					
3) ELECTRICAL CHARACTERISTICS:					
SEE PAGE 2					
4) AGENCY APPROVALS					
NEC (UL) TYPE CMX OUTDOOR-CM					
FU CE MARK: MEETS FU DIRECTIVE 2011/65/FU (RoHS	S II)				
5) APPLICATION					
SHIELDED ELEXIBLE PATCH/JUMPER CABLE TO					
SUPPORT SCREENED ISO 11801 CLASS D AND					
SCREENED 568 2-D CATEGORY 56 APPLICATIONS					
CONCERED COULD ON LOOK TO ALL LIGHTONG.					
6) PRINT: (WHITE INK ON BLACK JACKET ALL OTHERS BLACK INK)					
				\setminus	
	SHIELD				
- CM 4PR 26 AWG 75C SUN RES CE RoHS			$\langle \succ $		
			$\gamma \propto 1//$	7	
		WHT/GF	RN 🖊 WHT/ORG 🖉 🎢 🦯	/	
		Created SG 9/20/12 DRAWN: 03/22			
		REV 05 CHECKED AZR		I N [™]	
STANDARD PACKAGING			WIRE & CAE	SLE	
CUSTOMER APPROVAL:	DATE:		H CABLE INDUSTRIAL	NFD	
	<u>.</u>	DRAWING # Q	WC0044 1	of 2	

DOCUMENT #0040 05/26/11

This document contains proprietary and confidential information which is the property of Quabbin Wire & Cable Co., Inc. and may not be copied or disclosed to others without the express written permission of Quabbin Wire & Cable Co., Inc.

POE COMPLIANT TO 68 METERS WHEN CABLE WILL MEET CAT 5e CHANNEL RE	INSTALLED PER RECOM QUIREMENTS TO 68 ME	IMENDATIONS IN TIA TSB-18	84	
CAPACITANCE, MUTUAL, NOM.	13.5 PF/FT. AT 1 M	Hz		
DIELECTRIC WITHSTANDING, MIN.	1500V RMS			
D C RESISTANCE MAY	300V 42.6 O/1 000'			
	42.0 32/ 1,000	Verifier Verifi		
NOTE: TESTING FOR THE FOLLOWING IS	S CONDUCTED OFF THE	REEL. (FOR 100m OF CABL	.E)	
IMPEDANCE, NOM.	100 ± 15 Ω 1 - 100	MHz		
RETURN LOSS	1 ≤ <i>f</i> < 10 MHz	20 + 6 LOG(<i>f</i>) dB MIN*		
	10 ≤ <i>f</i> < 20 MHz	26 dB MIN*		
	20 ≤ <i>f</i> ≤ 100 MHz	26 - 5 LOG(<i>f</i> /20) dB MIN*		
NEXT	1 ≤ <i>f</i> ≤ 100 MHz	35.3 - 15 LOG(ƒ/100) dB M	IN	
PSNEXT	1 ≤ <i>f</i> ≤ 100 MHz	32.3 - 15 LOG(<i>f</i> /100) dB M	IN	
ACRF	$1 \le f \le 100 \text{ MHz}$	23.8 - 20 LOG(<i>f</i> /100) dB M	IN	
PSACRF	1 ≤ <i>f</i> ≤ 100 MHz	$\leq f \leq 100 \text{ MHz}$ 20.8 - 20 LOG($f/100$) dB MIN		
INSERTION LOSS	1 ≤ <i>f</i> ≤ 100 MHz	1.5[1.967 $√f$ + 0.023(f) + 0	.050/ $√f$] dB MAX	
DELAY	1 ≤ <i>f</i> ≤ 100 MHz	534 + 36/ \sqrt{f} ns MAX		
DELAY SKEW	$1 \le f \le 100 \text{ MHz}$	<25 ns		
COUPLING ATTENUATION	$30 \le f \le 250 \text{ MHz}$	100 - 20 LOG(<i>f</i>) (MAX 60 d	IB) E3*	
VELOCITY OF PROPAGATION	68%			
*PER ODVA VOLUME 2 ETHERNET/IP				

CUSTOMER	APPROVAL:

2 of 2

DRAWING #	QWC0044

TITLE